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Sequential Data and Domains

Sequential data are the second type of the most frequently used 
data in real-world applications because many processes, signals 
and input data are ordered in time or for any other reasons, 
so we need to use this special relationship between simple or 
object data that puts them in order. This order has a special 
meaning when classifying, predicting, translating, transforming or 
doing any other operation on such sequential data.

Sequential patterns differ from static patterns because:

• successive data (points) are strongly correlated,

• the succession of data is crucial from their recognition or 
classification point of view.
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Sequential Data and Domains

A sequence can be defined using mathematical induction 
as an external vertex or an ordered pair (t,h) 
where the head h is a vertex and the tail t is a sequence:
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Sequential Data and Domains

Sequential data are used in speech recognition, automatic proof-
reading and text correction, DNA sequence analysis, ECG and EEG 
signals classification, sentiment classification, machine translation, 
video activity recognition , music generation, and many others: 
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Learning Sequences

Sequences usually model processes in time (actions, movements) 
and are sequentially processed in time to predict next data 
(conclusions, reactions).

Sequences can have variable length, but typical machine learning 
models use a fixed number of inputs (fixed-size window) 
as a prediction context:
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Sequential Nature of Thinking

➢ Human thinking process does not start from scratch every 
second for each pattern as is usually processed in CNNs and 
classic artificial neural networks – what is their major 
shortcoming between others.

➢ We always take into account previous words, situations, and 
states of our brains, not throwing away all previous thoughts 
during e.g. speech recognition, machine translation, entity 
names recognition, sentiment classification, music generation, 
or image captioning.

➢ Our intelligence works so well because it is not started again 
and again for every new situation but incorporates the 
knowledge that is gradually formed in time. Thanks to it, 
all next intelligent processes take into account our previous 
experiences.

7

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php


Recurrent Neural Networks

➢ Recurrent neural networks address this issue, implementing 
various loops, allowing information to persist, and gradually 
processing data in time (following time steps).

➢ We can into account previous state of the network, previous 
inputs and/or previous outputs during computations.

➢ This chain-like nature reveals that recurrent neural networks 
are intimately related to sequences and lists, and are the 
natural neural network architecture for such data.
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Natural Language Processing 

Natural Language Processing (NLP) includes various tasks of 
language analysis, understanding, translation, generation, 
classification and clustering, so we need to operate on words, 
parts of words, sequences of words, and sentences.

To work with words, we need:

• an efficient way to represent words and their meaning,

• a possibility to associate the words with their meaning (semantics),

• to be able to order and process words in sequences and contexts

because each sequence of words cares the meaning of important 
dependences between words put in given orders, e.g.

He likes to take part in computational intelligence exercises.

He exercises computational intelligence to take part in likes.
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One-hot Encoding of Words

We usually use any kind of a word dictionary (a vocabulary of the processed language) in 
which each word is represented as a one-hot vector that consists of zeros except to the 
single position representing a given word that equals to 1. Each represented word has an 
exact position in this vector and is represented by 1 in this vector that contains zeros in 
all the other positions:

One-hot vectors are often used to represent a sequence of words on the inputs of 
the recurrent neural networks (RNNs) as well as the other types of neural networks.
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One-hot Encoding of Words

The words are usually limited to a given number of the most frequently used words
in a given language (taken after the chosen frequency dictionary), and next, they are 

sorted in their alphabetical order to accelerate search algorithms:

One-hot vectors can be easily encoded using Keras Tokenizer:
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Tokenizer for One-hot Vectors

We should use the Tokenizer to create one-hot vectors for given samples:
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Word Meaning and Embeddings

The word embeddings use multidimensional structure,
which puts similar-meaning words close in the embedding space:

For instance, the words “king" and “queen" are close in many aspects,
so they should be close in the embedding space.
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Word Embeddings

Word embeddings are meant to map human language into a geometric space.
In a reasonable embedding space, we would expect:

• Synonyms to be embedded into similar word vectors.

• The geometric distance (e.g. L2 distance, also known as the Euclidean norm) between 
any two-word vectors to relate to the semantic distance of the associated words.

• Words meaning very different things would be embedded to points far away from 
each other, while related words would be close.

• Specific directions in the embedding space would be meaningful.

The geometric relationships between word vectors should reflect the semantic 
relationships between these words and all others. Common examples of 
meaningful geometric transformations are, e.g., "gender vectors" and "plural vector": 

• For instance, by adding a "female vector" 
to the vector "king", one obtains the vector "queen".

• By adding a "plural vector", one obtains "kings".
Word embedding spaces typically feature thousands of
such interpretable and potentially useful vectors.

• The words "accurate" and "exact" are interchangeable
in most sentences, so they should be close 
in the embedding space. 
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Comparison of Word Representations

These two approaches deliver two different solutions!
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